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Null geodesics in the static Ernst space-time 
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Tata Institute of Fundamental Research, Colaba, Bombay 400 005, India 

Received 24 May 1982 

Abstract. The null geodesics in the equatorial plane of the Ernst space-time have been 
studied. It is found that they fall essentially into two types depending on the value of the 
dimensionless magnetic field parameter 0. If 0 is less than 0, = 0.094 68 then there exist 
persisting orbits and stable and unstable circular orbits. However, for 0 > p c  there are 
no persisting orbits and every particle with non-zero angular momentum must fall into 
the singularity. For > O  no particle with non-zero angular momentum can escape to 
infinity. The weak field case 0 << 1 has been treated in detail and the radii of the stable 
and unstable circular orbits have been obtained in this limit. Finally, the gravitational 
redshift has been calculated relative to static observers. 

1. Introduction 

The study of geodesic motion in the Schwarzschild, Kerr, Kerr-Newman, Nordstorm 
and Ernst fields representing a static Schwarzschild-type black hole immersed in an 
external, axially symmetric, magnetic field has created considerable interest in this 
subject (see Darwin 1959, 1961, Carter 1966, 1968, De  Felice 1968, De Felice and 
Calvani 1972, Dadhich and Kale 1977, Dadhich er a1 1979, Dadhich and Wiita 1981). 
Dadhich et a1 (1979) have studied the motion of charged particles in Ernst's static 
space-time (1976) in which the magnetic field becomes uniform asymptotically if 
IBm I << 1. In the special case of absence of mass in this space-time the solution reduces 
to Melvin's magnetic universe (1964). Melvin and Wallingford (1965) have examined 
geodesics in this universe. 

The present work aims at investigating the behaviour of null geodesics in the Ernst 
space-time. The study of null geodesics is of great interest in probing into the geometry 
of the space-time and the gravitational field associated with it. The stability of a 
Schwarzchild black hole immersed in a magnetic field is of considerable interest, and 
hence our examination of the geometry may to some extent be a step in that direction. 
One could categorically make a statement whether the geodesics in the Ernst space- 
time are more bound than that of the Schwarzschild case. If the geodesics are pulled 
closer, due to the presence of the magnetic field, then this could possibly suggest that 
we are dealing with the gravitationally more stable system. 

In the classical limit, zero mass particles, like photons, neutrinos, etc travel along 
null geodesics and hence our investigations have some astrophysical relevance. One 
of the motivating factors is the study of the optical appearance of compact objects 
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immersed in strong magnetic fields. Such situations might exist near the centres of 
galaxies. The current black hole dynamo models consider external fields to play an 
important role in energy production mechanisms. Our work will also go towards 
determining the energy flux profiles of neutrinos emitted from the vicinity of the 
compact objects. In general, the problem of radiation propagation can be examined 
in this light as the radiation tends to travel along null geodesics. The magnetic field 
will alter the course of the zero mass particles from that of the Schwarzschild case. 

Our investigations show that the gravitational field of the Ernst space-time is 
extremely strong. This gravitational field can be compared with the two well known 
limiting cases, namely, the Schwarzschild case (B = 0) and the Melvin magnetic 
universe (m = 0) case with the aid of null geodesics. The null geodesic in the Schwarz- 
schild case can almost always escape to infinity, implying that the gravitational 
attraction is limited. In the case of Melvin's magnetic universe, the parallel bundle 
of magnetic field lines produces a gravitational field so strong that every particle with 
non-zero angular momentum moves in a bound orbit. In the Ernst case the gravita- 
tional field is the sum total of the two fields due to both the central mass and the 
magnetic field and therefore is immensely powerful. The gravitational field of the 
Ernst space-time retains the features of the horizon at r = 2m and the singularity at 
r = 0 of the Schwarzschild space-time, and at the same time possesses the characteristics 
of the Melvin magnetic universe for large radial distances. The gravitational field falls 
off more slowly than that of the Schwarzschild black hole. Due to this reach of the 
magnetic field, all particles with non-zero impact parameter cannot escape to infinity 
but can only move in bound orbits. In fact, for sufficiently strong magnetic fields 
p 3 0.09468, wherep = 8.5 x lo-' (M/Mo)(B/10'2gauss) is adimensionlessparameter 
which gauges the strength of the magnetic field, M a  is the mass of the sun and B the 
magnetic flux intensity, every particle with non-zero impact parameter must fall into 
the singularity. For /3 less than this critical value there also exist persisting orbits. 
As in the case of Melvin's magnetic universe and unlike the Schwarzschild case, a 
particle with non-zero impact parameter is never able to attain an asymptotically 
straight trajectory. Finally, the redshift for the particles has been computed relative 
to static observers. The redshift plays a crucial role in energy considerations. 

In § 2 we obtain the first integrals by the Hamiltonian-Jacobi methods. In § 3 we 
discuss the effective potential obtained and the null trajectories. In § 4 we take up 
the weak magnetic field case of p << 1. In 9 5 we compute the gravitational redshift 
associated with the null trajectories. 

2. The equations of motion 

The Ernst space-time which represents a Schwarzschild black hole immersed in an 
axially symmetric magnetic field is described by the metric in the units of c = G = 1 by 

d s 2 = A 2 [ ( l - T )  2m dr2+r2deZ-  ( 1-- "m) dt 2~ f- r2$' e d(P 

where A = 1 + BZr2 sin2 8. The quantities m and B represent the mass and the constant 
value of the magnetic field on the axis respectively. The magnetic field becomes 
uniform asymptotically. The metric (2.1) reduces to the Schwarzchild solution for 
B = 0 and to the Melvin magnetic universe when m = 0. 
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Following Carter (1968) ,  we can write down the Hamilton-Jacobi equation for 
the function S :  

a s / a A  = $gij(as/axi)as/axj (2.2) 

where A is an affine parameter along the geodesic. Substituting the value of g” obtained 
from (2.1),  the equation (2.2) for the massless particle assumes the form 

2 2 m  a A’ as 
A r ae r sin e acp 

O=A-’ ( I - -  ) (22+&(E)2+-(-) - A - ’ ( l - $ ) - ’ r 9  . (2.3) 

Since the coordinates t and cp do not appear explicitly in the metric we can immediately 
write down a form for S :  

S = S * ( r , e ) + k p - E t  (2.4) 

where 1 and E are constants representing respectively the angular momentum and 
the energy of the particle. Unfortunately the equation (2.3) is not separable in general 
in r and e coordinates. However, if we set 8 = 1r/2 and de/dh = 0, the equation 
becomes separable and the first integrals may thus be obtained. It is also evident 
from symmetry considerations that the particle will continue to travel in the plane 
8 = ~ 1 2 .  The first integrals in the case of the equatorial plane are given by 

(c1 = IA2 / r2  sin2 e (2.5) 

t = E / A 2 ( 1  - 2 m l r ) .  (2.6) 

The dot over a quantity denotes differentiation with respect to the affine parameter. 
Since the geodesic is null, another first integral is given by ds = 0. In the light of 
these equations, the radial propagation is governed by the equation 

E 2  12A2 r =  ” (1-2m1r)  A2 
( A 2 ( 1  - 2 m l r )  -77). r sin 8 (2.7) 

The equations (2.5),  (2.6) and (2.7) describe the null geodesics in the equatorial plane 
completely. From these equations we may determine the quantity drldcp, which gives 
the radial displacement relative to the angular displacement, 

($) = p [ p - 7 ( 1 - 3 ]  r4  1 A4 

where b = l /E is the impact parameter of the null geodesic. The null geodesics are 
parametrised by only one parameter, namely the impact parameters b. To study the 
behaviour of the null geodesics, we may write equation (2.8) in an effective potential 
form with the effective potential given by 

(2 .9)  

Propagation of zero mass particles is possible when l / b 2  exceeds V. For convenience 
we choose dimensionless units 

V = ( A 4 / r 2 ) ( 1  - 2 m / r ) .  

x = r / m  p = m B  

and express V as a function of x ,  

v = x - 2 ( 1 - 2 / x ) ( 1 + p  2 x 2 4  ) . 
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The parameter p measures the strength of the magnetic field for a fixed mass m.  The 
entire behaviour of the orbits of zero mass particles is dependent on the effective 
potential V. Therefore it is necessary to study the properties of the function V in detail. 

3. The effective potential V and the orbits 

Since we shall be interested in the region outside the event horizon (r > 2m) we shall 
mainly examine the behaviour of V in the region x > 2. The function V ( x )  vanishes 
at x = 2 and tends to infinity V ( x )  - p 8 x 6  as x grows arbitrarily large. The existence 
of the maximum or the minimum of the potential plays a crucial role in determining 
the orbit, and hence we set dV/dx = 0. This yields the cubic 

f ( x )  3 p 2 x 3  - 5 p 2 x 2  - x + 3 = 0. (3.1) 

The roots of f (x)  = 0 will be the points where the effective potential V possesses 
extrema. The cubic f ( x )  possesses three roots of which one is real and negative. The 
other two roots of f could be complex or real depending on the value of p. This can 
be easily verified by checking whether the minimum value of f for x > 2  is negative. 
This is achieved again by setting dfldx = 0. This equation is easily solved and it is 
seen that the minimum value off  is negative if the following condition holds: 

(25p2+9)[5p +(25p2+9)”2]-342/3 > O .  (3.2) 
For sufficiently small values of p the expression is clearly positive, its value being 
about 27. Therefore for these small values of p, V possesses two extrema, a maximum 
and a minimum, with the maxima occurring for a smaller value of x .  For p = 0.1, 
say, the expression becomes negative and hence V does not possess any extrema in 
the relevant range of x .  However, at large p the expression again changes its sign 
and V again possesses extrema, but they occur for x <2.  Therefore for sufficiently 
large values of p the function V is monotonically increasing in the range of interest 
x >2.  Therefore our results can be summarised as follows. There are essentially two 
types of behaviour of the effective potential V. For p less than a critical value, say 
pc, the function V possesses a maximum followed by a minimum, while for p > p c ,  
V is monotonically increasing in the region of interest, x > 2. It remains to determine 
the value of pc. Computations on the computer by the usual root finding methods 
show that 

pc = 0.094 68. (3.3) 
The two types of behaviour of V are shown in figures l ( a )  and 2(a).  Figure l(a) 
shows the graph of V as a function of x for 6 = 0.07 which is less than pc. V possesses 
both a maximum and minimum in this case. Figure 2(a)  depicts the other case where 
p is chosen to be 0.1 which is greater than pc. The potential V in this case is 
monotonically increasing. As p increases further, the slope of V becomes steeper, 
which shows that the gravitational field increases rapidly with the increase in the 
magnetic field strength. 

From the properties of the effective potential V discussed above, the behaviour 
of the orbits of the zero mass particles can be deduced. When p <pc  the existence 
of the maxima and minima of V gives a structure of a potential well in the range of 
x > X m a x ,  where Xmax is the value of x at which the maximum occurs. Since pc itself 
is small compared with unity, the case is not too dissimilar from the Schwarzschild 
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Figure 1. (a) The effective potential V is plotted against x for p =0.07. Since p < p c  
the effective potential possesses both a maximum and a minimum. Persisting orbits, stable 
circular orbits exist in this case. ( b )  The full curve is the null trajectory of a particle for 
b = 5.345 m and p = 0.07. It is bound between the two broken circles of radii x = 6.3 and 
x = 8.1. This is a typical example of a persisting orbit. 

X ~ 

Figure 2. ( a )  The effective potential V is plotted against x for p = 0.1. As p > p, the 
effective potential is monotonically increasing for x >2.  There are no persisting orbits 
and every particle with non-zero impact parameter must fall into the blackhole singularity. 
( b )  The full curve is the null trajectory of a particle which falls into the singularity r = 0, 
having b = 3.5355 m and p = 0.1. The particle spirals into the singularity. 

case where x,,=3. In this case xmax-3. If l / b 2  is less than V(xmax) and greater 
than V(xmin), where xmin is the value of x at which V possesses a minimum, then a 
persisting orbit exists and the particle is trapped in the potential well. It does not fall 
into the black hole or escape to infinity. In fact, if b # 0, that is if the particle propagates 
non-radially, it car1 never escape to infinity. This happens because V(x) grows without 
bound for x tending to infinity and the particle must experience a turning point for 
a finite value of x. Figure l ( b )  shows a persisting orbit per /3 = 0.07 and b = 5.345 m. 
The particle is bound between two circles with radii as the two roots of 1 / b 2 -  V(x) = 
0. The potential well is extremely shallow, with the result that the particle tends to 
circle the black hole considerably in moving from one bounding circle to the other 
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bounding circle. For 1 / b 2 3  V(xmin) 

cp -[(I + ~ ~ ~ k i n ) ~ / ~ k i n I  sin-’ [a(x - ~ m i n ) / ~ I  

where 
1 2  2 

E 2  = l / b 2 -  V2(Xmin) a 2 = T d  Vldx 

The particle may escape to infinity only if it travels radially outwards. The radial 
propagation is described by 

dr/dA - E/B4r4. 

One finds that dr/dA becomes increasingly small as r increases, implying that the 
particle finds it increasingly difficult in climbing the potential gradient. The gradient 
becomes steeper and the gravitational field strengthens as r increases since, broadly 
speaking, a sphere of larger radius r encloses more magnetic energy which produces 
the gravitational field. 

If 1/b2 is greater than V,,, the particle must end up in the black hole either by 
bouncing at the potential barrier or otherwise. At x = x m i n  there exists a stable circular 
orbit, while for x = xmax  there is an unstable circular orbit. A slight perturbation in 
the orbit is sufficient to make the particle fall into the black hole. 

In the case of p > p c  there is no persisting orbit, and for 6 # 0 the particle must 
eventually end up at the r = 0 singularity. Figure 2(b)  shows a typical trajectory of 
such a particle. There are no stable or unstable circular orbits as were present in the 
earlier case. The magnetic field is too strong to allow any such behaviour. 

4. The weak magnetic field case /3 << 1 

This is the case which may be of practical interest since p - O(1) involves very large 
masses and extremely powerful magnetic fields. The essential features of the orbits 
and the effective potential can be easily foretold since we are familiar with the 
Schwarzschild photon orbits. For not-too-large values of x the effective potential will 
somewhat mimic the Schwarzschild case. Only when x becomes sufficiently large will 
the psx6  term predominate and make the effective potential deviate from the p = 0 
effective potential. Thus one may picture the effective potential as follows: Starting 
from the value zero at x = 2 ,  V ( x )  will attain a maximum of - fi at about xmax - 3 
and then fall rapidly until it is almost zero. At somewhat larger values of x the shape 
of the potential is like an extremely shallow well. Finally, when x becomes sufficiently 
large the potential will grow, and tend to infinity as x becomes arbitrarily large. With 
this broad picture in mind one can now work out the details of the essential features 
of the effective potential profile. 

The maximum of V can be calculated on remembering that x m a x  = 3 in the p = 0 
case. Therefore, setting xmax = 3 + E ,  where E is a small quantity, in f ( x )  = 0 and 
retaining only the first-order terms in E and p2 ,  it is possible to solve for E .  The result 
is that xmax = 3 + 36p2. Therefore the maximum of the effective potential is ‘pushed 
out’ on application of the magnetic field. The unstable circular orbit possesses a larger 
radius than that of the Schwarzschild case. The height of the maximum is - &( 1 + 36p ’) 
which is higher than the caseof p = 0. The impact parameter for the unstable circular 
orbit has the value b - 3J3m(l- 18p2). 

1 
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The minimum of V can be determined by observing that it occurs fo1 a large value 
of x when p is small. The relation f ( x )  = 0 yields in this case xmin - 1/43p. Therefore 
the stable circular orbit becomes larger and tends to infinity as p decreases to zero. 
The value of the minimum may be computed to yield Vmi,-mp . In doing the 
calculations we have retained the first-order terms in p2.  The associated_ impact 
parameter of the particle to traverse this circular orbit is given by the value 343mp/16. 
This situation is similar to that of the Melvin magnetic universe, where the effective 
potential is given by 

256 2 

VM(r)  = r-'(1 + ~ ~ r ' ) ~ .  (4.1) 

Here we have fallen back on the original coordina,tes, as our dimensionless coordinaies 
are undefined since m = 0. The function VM(r)  possesses a minimum at r = 1/43B 
with a height of m B  . We observe the similarity between the effective potential V 
for large x and VM(r)  given by (4.1). This is due to the fact that the term (1-2/x) 
occurring in V ( x )  is reduced to unity for large x and V approaches VM in the limit. 

Therefore we note the following point. The weak field case of the Ernst space-time 
is very much like the Schwarzschild for small values of x since the term ( l + p * ~ ~ ) ~  
is of the order of unity. However, when x becomes large the potential function makes 
a transition to that of the Melvin magnetic universe since the term 1 - 2 / x  approaches 
unity. This again highlights the fact that the Ernst space-time behaves like its limiting 
cases m = 0 and B = 0 in different regions of the radial coordinate. 

256 2 

5. Gravitational redshift 

The redshift of a particle is of major concern in energy considerations. The energy 
flux profiles depend to a large extent on this redshift factor. We give here the 
computations of the redshift of a particle emitted near the black hole and observed 
far away from the object. We naturally expect that the strengthened gravitational 
field due to the magnetic field energy will increase the redshift factor. We assume 
that both the emission and the detection of the particle takes place in the static 
observer's frame of reference. The redshift is given by 

1 + z  = VJY, = (k"u , ) , / (k"v , ) ,  (5.1) 

where v, is the frequency of the emitted particle and v o  the frequency at the observed 
point. The vector k" is tangent to the null geodesic. The time-like vectors U" and 
uoL are the unit tangents to the world lines of the static observers at the point of 
emission and observation point respectively. If the emission occurs at r = r l  and the 
observation point is r = r2 then the non-zero components of U" and U, are 

U' = [ A ~ ( I  - 2m/r l )1 '2 ] -1  U' = [A2(1 - 2m/r2 )1 '2 ] -1  

where 
2 2 4  A i = ( l + B  r i )  j = 1,2 .  

From the first integral (2 .6 )  we have 
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The above equation describes the redshift of the particle in the Ernst field. It is seen 
that the redshift depends crucially on the magnetic field (to its eight power). The 
dependence on the mass is not that striking. The expression reduces to the Schwarz- 
schild case when B = 0. 

6. Conclusion 

We have examined the null geodesics in the Ernst space-time in the equatorial plane 
8 = r / 2 .  It is seen that the behaviour of the null geodesics is essentially of two types, 
depending on whether the magnetic field parameter p is greater or less than the 
critical value pc = 0.094 68. For p <pc we find that there exist persisting orbits, stable 
and unstable circular orbits. However, if p > p c  none of these types of orbits are 
present and every particle with non-zero angular momentum must fall into the 
singularity r = 0. The particles with only pure radial motion can escape to infinity. For 
small values of p, that is, p << 1 we can explore further the behaviour of the effective 
potential. The radii of both the stable and unstable circular orbits are obtained in 
this case in the leading terms in p. Finally, the gravitational redshift has been computed 
which is of importance in the energetics of the particle. 
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